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Abstract. Wediscuss the circularlysymmetric solitonstatesand the I-Vcharacteristinof an 
annular Josephson junction with a large width by direct numerical simulation. By assuming 
a soliton or multiple-soliton Solution initially, we find that there exist a stable single-soliton 
(one-soliton) state, two-soliton state and three-soliton state in our system in the absence of 
an external applied field. The corresponding zero-field steps are obtained. A state that traps 
initially more than four solitons in the system turns out to be unstable. There exists a 
transition between the multiple-soliton states which suggests some physical points for the 
application of an annular junction. A suggestionof soliton excitation in a physical experiment 
is also discussed. 

1. Introduction 

The topic of fluxons in large Josephson junctions has attracted considerable interest. A 
Josephson junction is a well understood solid system on which experiments can be 
undertaken with relative ease. There has been a variety of suggestions for applications 
with such diverse fields as microwave oscillators, amplifiers and data-processingsystems 
[ 1.21. Recently, the Josephson junction has also been researched for the rich non-linear 
phenomena, such as chaos and phase locking in such a system [3-51. The relative local 
pair phase difference across a Josephson junction obeys the modified sine-Gordon 
equation (SGE). A large junction compared with the Josephson penetration length AJ 
can support resonant propagation of a soliton (or fluxon) trapped within the junction. 
The DC manifestation of these motions is a sequence of equidistantly spaced branches 
in the I-V characteristic of the junction. 

So far attention has been primarily given to one-dimensional (ID) junctions of in- 
line and overlap types. From our point of view, two-dimensional junctions are no less 
interesting than ID junctions in that, under certain conditions and configurations, they 
can also support soliton motion, and there exists the soliton return effect, e.g. in 
rotational symmetric junctions, in contrast with the ID case [&SI. The main problem for 
the application of a circular junction with rotational symmetry, from our point of view, 
is the instability of the soliton at the centre of the junction. After energy radiation from 
it during its reflection at the centre of the junction, the soliton disappears [SI. A proper 
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way to remove such an obstacle is to excavate the central part of the circular junction. 
This kind of device (or annular junction) has been studied in the literature in recent 
years, and also in experiments 191. However, [9] considered only the problem of tan- 
gential rather thanradial dynamicsofthe annularjunction which is somewhat equivalent 
to the ID overlap junction with spatial periodicity, since the width W of the annular 
junction there is less than A,. If W + h,, the self-field effect of the system arises, which 
introduces the radial dynamics of the junction. Stable circularly symmetric states are 
special states that may appear and are of great interest. These states may be tunable by 
both the feeding current and the applied field introduced simply by thecurrent flowing 
along another wire located at the centre of the junction, without breaking the circular 
symmetry. 

In our previous research [&SI, we have studied the dynamical behaviour of an 
annular junction in the case of circular symmetry. As was described there, the annular 
junction is somewhat like an in-line junction with the current introduced at the external 
boundary. We found that there exists a ring-shaped soliton solution. The dynamical 
equations and energy equationsof the soliton have been obtained in [ 101 from an energy 
analysis, which governs the soliton motion. The internal radius p, was set to be very 
large, and the dissipative parameter (Y very small; thus the soliton wave is essentially 
unchanged compared with that in a ID junction, and the effects of dissipation and the 
so-called l/p term in the SCE are only to modulate the velocity and the position of the 
soliton. There exist tWo kinds of soliton motion within the junction. 

(i)Thefirst isaresonant soliton motion. Asolitonfirstly movesinwardsand becomes 
an anti-soliton after the reflection at the internal boundary; then the anti-soliton moves 
outwards. If the energy is large enough, the anti-soliton will become a soliton after the 
reflection at the external boundary. The repeated back-and-forth motion within the 
junction under various feeding currents corresponds to a current step in the I-V charac- 
teristic of the junction. 

(ii) The second is the returning motion of a soliton. The anti-soliton (or soliton) will 
return without reaching the external boundary because of not enough energy. That 
phenomenon is called the soliton return effect [7,8].  The studies made in [7] were made 
by direct numerical simulation, and dissipation was not presented there. Considering 
that the effects of dissipation are unavoidable in a real system, we shall further discuss 
the soliton return effect (which isconsidered in particular in the presence of dissipation 
in [ll]) and shall discuss the critical point, the non-zero minimum voltage and current 
in the current step of the I-V characteristic that relates to the soliton return effect. The 
soliton return effect makes a main difference between a ID and an annular junction. 

It has been shown by direct numerical simulation as wrell as experiments that there 
arc multiple-soliton states in both an in-line and an overlap ID junction [12], although 
somedifferenceexists between therangesof the biascurrent in thezero-fieldsteps(z~s). 
From our point of view. there should also exist multiple-soliton states in an annular 
junction for the similarity between a I D  in-line junction and a circularly symmetric 
annular junction (which, hereafter, is called annular junction for short). In a numerical 
simulation, a soliton solution is assumed to be the initial condition. However, in a real 
system, the soliton could only be excited under certain conditions. There have been 
experiments on the excitation and behaviour of soliton(s) or fluxon(s) in a ID long 
Josephson junction [13,14], but no experiment on the excitation of a circularly sym- 
metric soliton. Thus it is important to find the way to excite soliton(s) in an annular 
junction. I n  addition, the phenomenonof the transition between multiple-soliton states 
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Figure 1. The annular Josephson junction con- 
figuration. The annular width W is equal to the dif- 
ference between the external radiusp. and internal 
radius pi of the junction. The feeding current I' flows 
along the Z direction, the normal direction of the 
junction plane. The external magnetic field is pro- 
duced by acurrent [;, that flows along the Z direction 
in another conducting wire located at the centre of 
the junction. 

deserves to be researched because of its application in the realizationof adata-processing 
system. 

The purpose of the present paper is to investigate numerically the single- and 
multiple-soliton states, to discuss the transition between multiple-soliton states in an 
annular junction, and to discuss a possible method of soliton excitation. All states are 
circularly symmetric. 

2. Model of simulation 

The annular Josephson junction configuration is shown in figure 1. The annular width 
W is equal to the difference between the external radius pe and internal radius pi of the 
junction. The feeding current I' flows along the Z direction, the normal direction of the 
junction plane. The external magnetic field is produced by a current 1;1 that flows along 
the 2 direction in another conducting wire located at the centre of the junction. The 
dimensionless dynamical equation is assumed to be described by the modified SGE [6] 

plPp + (~/P)Q,,, - v n  - CQ,, =sin Q, (1) 

v p  I p P i  = 1;1/2nPi (2) 

9plp=p. = (1' + 1;1)/27cPe. (3) 

with the boundary conditions 

The normalization of equations (1)-(3) can be found in 161. I n  equation ( I ) ,  q P  and Q,, 

are the differentials for the phase Q, with respect to space p and time f respectively, and 
LYQ,, represents the dissipation effect which results from the tunnelling of the normal 
electrons across the barrier. Equations (2) and (3 )  result from Ampbe's law for Q , ~  and 
I;,  and I', since pp represents the local magnetic field in our system. The renormalized 
current I will be used unless confusion might arise: I = f'/n(pf - p f ) .  

The energy of the junction is [6,10,11] 

E = 2 ~ p  dp [$(Q,: + Q,;) + 1 - COS Q,] (4) I 
where $(Q,: + Q,;) is the contribution of the electromagnetic field in the junction, and 
1 - cos Q, is the contribution of the junction free energy due to the existence of supercur- 
rent sin Q,. The consideration of energy of the junction is useful to discuss the condition 
of a stable soliton motion, as presented in [lo]. 
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We assume that a circularly symmetric soliton solution can be taken as a zeroth- 
order initial solution of the modified SGE, i.e. equation (1): 

where U, = k 1 are the polarities of the soliton and anti-soliton respectively, and in is the 
number of solitons (or anti-solitons). Hereafter. we shall not identify the soliton or anti- 
soliton unlessconfusion might arise. The function R,(t) describes the radiusof the fluxon, 
i.e. the maximum of rp,, and will be simply denoted hereafter as R,.  In fact. the exact 
solution of equation (1) differs (but not essentially) from that described by equations 
(5) and (6) and thus should be called the exact quasi-soliton solution. For convenience, 
we would rather call them the soliton or multiple-soliton solution instead. 

Since dissipation exists in our system, the initial values of U, and U, should be chosen 
appropriately with respect to I to ensure that the net energy input is positive to balance 
the dissipation. 

We use the implicit finite-differcnce method with respect to space p ,  and the fourth- 
order Runge-Kutta integration with respect to time 1 together with the initidlconditions, 
equations (5) and (6). to evaluate the evolution of the discretized QJ and rp,, etc. The 
algorithm is described in more detail in the appendix. The precision and stability of 
computationarecarefullycheckedincaseanyartificialresultsmight arise, Inourdouble- 
precision computation, the step bp in space and the step bt in time are 0.1 and 0.05, 
respectively, which already provide satisfactory precision and computation stability. 
The average voltage of the junction is given by 

which is the spatial-temporal average of yr. 

3. Results and discussion 

Throughout the following discussion, we deal with theannular junction withp, = 20and 
pe = 30 in the absence of an external field (f, = 0). The dissipation constant is (Y = 0.01 
unless it is specially defined. The reason for the choice of CY is as follows: explicitly. (Y = 
AJ/c'RNSCwherec' isthespeedoflight intheoxidedmedium,R, isthenormal resistance 
of the junction, S is the area of the junction and Cis  the capacity per unit area. Typical 
values of the parameters are [15] AJ  = cm. c' = lo9 cm s-' ,  R,S = lo-' 52 cm2 and 
C = 10" In our simulation, a stable state 
obtained under a certain bias current I is used as the initial condition under another 
adiabatically varied bias current I with respect to the former bias current. Thus the I-V 
characteristics of the junction can be easily obtained. 

hence a typical value of (Y is 

3.1. Single-soliton state 

Taking in = U ,  = + I ,  u I  = -0.94 and R I  = 28 in the initial conditions described by 
equations (5) and (6). we find that a single-soliton state is stable under the bias current 
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in the range 0.013 < I  < 0.078. We discuss the stable soliton state under a bias current 
of I = 0.022 (or I' = 35) as an example. 

Figure 2(a) shows the soliton solution qp - p at successive moments. The polarity u 
changes after the reflection of the soliton (or anti-soliton) at the boundaries. However, 
the sign of -uodoes not change; thus from equation (6)  we see that the sign of pr would 
not change, lq, would remain positive and the junction could get a positive energy input 
from the boundary to balance the dissipation in the junction. To see this, we present 
figure 2(b) which shows the relation p, - p at successive moments corresponding to 
figure 2(a). We see that q, remains positive during the back-and-forth motion of the 
soliton. except for some small amplitude waves or fluctuations which, in our view, result 
from the l / p  term in equation (1). 

The reflection of a soliton at each boundary can be assumed to be a collision process 
between a soliton within the junction and a virtual anti-soliton outside, and vice versa 
[16]. Thus qp becomes very small but q, becomes relatively large when the soliton is 
reflected. 'This can be seen from figures 2(a) and 2(b) .  Therefore it is advisable for us to 
take the position of the maximum of q, as the central position R of the soliton to discuss 
the dynamical behaviour of a soliton. We have given by means of an energy analysis in 
[ lo,  111 a full presentation of the equations that govern the dynamical behaviour of a 
soliton. Here we present only our results of direct numerical simulation. Figure 2(c) 
shows the evolution of the central position R of the soliton versus time f. Although 
dissipation exists in the junction, the velocity of the soliton is hardly changed during its 
motion. However, if the dissipation is slightly larger, for instance, (Y = 0.04 (and I = 
0.06), the situation is different; the relation R - I is shown in figure 2 ( 4  from which we 
cansee that in thissituation thevelocityofthesolitonis hardlychangedduringitsmotion 
from pc to p, but is decreased markedly during its motion from pl to pe. This behaviour 
cannot be explained only in terms of dissipation, as in the case of a ID in-line juncti0n.h 
[lo, 111. we explain the behaviour as the co-action of the dissipation and the so-called 
'effective attracting force' acting upon the soliton. The attracting force results from the 
l / p  term in equation (l), and it always tends to make the soliton move inwards. In fact, 
the dynamical equation of the soliton motion is [ lo ]  

du/dt - -(l/R)(l - U * )  - eu(1 - U * )  (8) 

dR/dt = U (9) 

with 

where du/dt is the acceleration of the soliton, and IuI < 1 (1 is the speed of light in the 
barrier). We can see from equation (8) that it depends on the competition of the 
attraction and the dissipation whether or not the velocity of the soliton is decreased 
during the motion inwards (with U < 0). Also, from equation (8), it is obvious that the 
velocity is decreased in any case during the outward motion (with U > 0). Because of the 
action of the attracting force, the soliton would return before it reaches the external 
boundary if its initial velocity were not large enough. This phenomenon is called the 
soliton return effect [8,11], which occurs when the external radius is too large or the 
bias current is not large enough to input enough energy into the junction; so the velocity 
of the soliton decreases with the decrease in energy due to dissipation. The soliton return 
effect in the presence and absence of dissipation will be discussed in detail elsewhere 
Ill]. In figures 2(c) and 2(d) there are some irregular regions which result from our 
definition of R and the existence of fluctuations (or small-amplitude waves) in the 
junction. The irregularity becomes even more prominent when the soliton is in the 
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Flgure 2. (a )  The soliton solution 9p - p under a feeding current of I = 0.022 at successive 
momentswithatimeintervalofAr= 2.5(normdlized).Theaxisof qP = Oisshiftedupwards 
with increase in time (---) with a spacing of A q p  = 4. The scale of each curve is the 
same. The junction paramelen are p ,  = 20, p. = 30 and w = 0.01, ( b )  The relation q, - p 
corresponding to (a); thespacingbetween the brokenlinesis AT< = 4. (c)Thet-dependence 
of the central position R of the soliton. The parameten of the junction are the same as in 
(a ) ,  and 1" is an initial value of 1. (d) The same as (c )  except that here the dissipation is a = 
0.04. and In is another initial value of I here. (e) The 1-dependence of the voltage Signdl m, at 
the boundaries with p = p (-J and p = p. (---) crspcctivel). The junction parameters 
andr,arcthes3mc~sthosein ( c )  (J]Thrr-dependenseofjuncti~nenergyE. Thr jinction 
par3mctersandr,3r~the~~mearrhorein(cJ  (SjTherclation bct~'eenthe]unctlonenerg) 
E and the cenlral position R of the soliton The ]unction parameters are the same as those 
in(aJ. (h)ThezFsroflhelunclion 3.1.1~s; A.z.zn.~.I.~n.Thepar3merersarethesame 
x those in (a ) ,  a = 0.01, p = 20 and p .  = 30. The broken line and the arrous 3re a guide to 
the transition of the soliton stater at the upper and loivcr ends of each branch. 

vicinity of the boundaries (R - pi or R - p,), owing to the action of the boundaries upon 
the soliton. 

Figure 2(e) shows the evolution of q,(p = p,) (full curve) and q,(p =5 p.) (broken 
curve) versus time t. The periodicity is obvious. From figures 2(c) and 2(e), we can see 
that a voltage pulse is created at a boundary where the soliton is reflected; therefore, 
the junction radiates energy periodically. The periodicity, high frequency and possibly 
large power of radiation make it reasonable for the application of an annular junction 
as a microwave oscillator. 

The variation in the energy E of the junction versus time f and central position R of 
the soliton is shown in figures 2(f) and 2k) .  There is an irregular region in figure 2(g) 
which results from our definition of R and the existence of fluctuations in the junction, 
as mentioned above. As no external applied field (Ih = 0) exists, the soliton does not 
get an energy input at the internal boundary but does in the vicinity of the external 
boundary, qualitatively in accordance with the analytical discussion in [lo] which indi- 
cated that, in the absence of applied field, AEi = 0 and A& = 4zI' where AEi and AE, 
are the energy changes due to the reflection of the soliton at the internal and extemal 
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boundaries, respectively. The energy decreases when the soliton moves within the 
junction becauseofdissipation. Theconsiderationofthe balance between the netenergy 
input and dissipation can be employed to determine the condition of a stable soliton 
motion. This is the main idea used in  [lo. 111. 

The variation in 9 at any position p, from our numerical results. is 4n in the time 
interval of one period of back-and-forth motion of the soliton. This confirms that the 
soliton here has also the characteristic of a 2n kink. Therefore. the average voltage V = 
(q,),pequals. for a single-soliton state, 4nlTwhere Tisthe period of the soliton motion. 

So far, we have discussed the single-soliton state under a bias current of I = 0.022. 
Figure 2(h) shows the ZFS with respect to any stable soliton and multiple-soliton states, 
and the I-ZFS is shown as open circles. The range of bias current of the IZFS is 
0.011 < ~ I  < 0.078. If I < 0.01 1 the soliton state is unstable; after several turns of return 
process, the soliton disappears, and the average voltage Vis zero. This corresponds to 
the switch from the finite-voltage state (soliton mode) to the zero-voltage background, 
i.e. to the axis V = 0 in figure 2(h). This transition, which has been discussed analytically 
in [ll],  is discontinuous and gives a critical situation with non-zero minimum current 
andvoltageat thelowerendofthe ~-z~~,andrelatestotheso-calledsolitonreturneffect. 
This phenomenon is remarkably different from the case of the I D  junction, for which V 
on the I-ZFS varies discontinuously to zero theoretically only if the dissipation is taken 
into account duringthecollisionprocessofsoliton andvirtualanti-soliton (or viceversa) 
at the boundary [ 171 (forthecorrespondingexperiments,see [IS]). Inother words. there 
are two effects, namely dissipation and the soliton return effect, which contribute to the 
non-zero voltage phenomenon at the lower end of the zFS in our system. On the other 
hand. if I > 0.078, the state switches to a rotational state in which the phase q increases 
very rapidly with a nearly constant 'angular velocity' w ,  i.e. 9 - cpO + wtwhere qo is an 
initial value of q ,  This transition corresponds to the switch from soliton state (soliton 
mode) to ohmic background. The rotational state of an annular junction has been 
discussed elsewhere [6]. 

3.2. Tno-soliton state 

Asanini t ia lcondi t ion,wetakem=2,~,  = u 2 =  + l , u , = u , =  - 0 . 9 4 , R ,  =24and 
R2 = 28. Following the same procedure as in section 3.1, we find that in the range 
0.016 < I < 0.060, the two-soliton state is stable. The corresponding 2-ZFS is shown 
in figure 2(h) (open triangles). Figure 3(a) shows the two-soliton solution qp - p at 
successive moments under a bias current of 1 = 0.033. and figure 3(b) shows the relation 
91, - p correspondingly. We can see from figure 3(a) that the solitons move along the 
same direction when their polarities are the same, and vice versa. When the two solitons 
collide, the local magnetic field qp is reduced, but the local voltage 9,is increased. The 
above-mentioned behaviour of the polarities and velocities of the solitons considered 
canbewellunderstoodfromequation(6). Figure3(c)showsther-dependenceof 9,(p = 
&). The pulses correspond to the reflection of the solitons at the boundary. We can see 
from figures 2(a) and 2(b) that the solitons are separated a nearly constant distance of 
4-5 AJ when they move along the same direction, as if no interaction exists. To clarify 
the interaction between the solitons, firstly we initially locate the solitons closely (e.g.. 
a distance of 1-2 apart) or simply take the superposition of two solitons; with the same 
polarity and direction of velocity, we find that finally the solitons are a distance of 4-5 AJ 
apart when they arein motion. Secondly, weinitiallyseparatethesolitonsalongdistance 
Of 6-7 A, (compared with the width of the junction, W = 10); with the same polarity and 
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Figure 3. (a )  The same as figure 2(a)  except that il is a two-soliton solution, and the bias 
current is I = 0.033. [ b )  The celation q?, - p corresponding to (a). (c) The (-dependence of 
the voltage signal p, at the boundaries with p = p, (-)and p = pe (---) in a two-soliton 
stateunderthe biascurrentofI= 0.033,withrOan initialvalueoffhere. 

direction of velocity, we find that finally the solitons are again a distance of +5 A, apart. 
Thus we can conclude that interaction exists between the solitons, and a distance exists 
between the solitons when the interaction is zero. 

The radiation of the junction in a two-soliton state issimilar to that in the one-soliton 
state except that there are two voltage pulses at each boundary during a period because 
of the reflection of each soliton, as can be seen from figure 3(c). From figure 3(c) we can 
also conclude that the two solitons are not in the so-called standing-wave mode, but in 
a propagating mode. Otherwise, there would be synchronized variation of rp, at each 
boundary 1191. The reason is that the boundary condition is neither symmetric nor 
asymmetric; it is impossible to excite a standing-wave mode. The average voltage of the 
junction in a two-soliton state equals 8n/Twhere Tis the period of the state, since rp at 
any position changes by 8n during a period. 
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Figure 4. The same as figure ?(a) except that it is a 
three-soli ton^ solution: the bias current is I = 0.03. 
and the spacing between the broken lines (the axis 
with 9p = 0 )  is IO. P 

From the stable two-soliton state under the minimum bias current I = 0.016, with a 
decrease in I .  two cases may occur. 

(i) If the decrease is slightly large, e.g. Af' = 4, then the state switches to a zero- 
voltage state even if the bias current is still in the range of I-ZFS. 

(ii) If the decrease is small enough, e.g. Af' = 1, then the former state switches to a 
one-soliton state, as indicated by the broken curve in figure 2 ( h ) .  

On the other hand. if we increase the bias current from the stable two-soliton state 
under themaximum biascurrentf = 0.06, theformerstateswitchestoarotationalstate. 
However, this rotational state is more complicated than that discussed in [6]. since it is 
not periodic. Chaos or intermittency may exist in such a state. We shall discuss this 
elsewhere. 

3.3. Three-soliton state 

Tak ingm=3 ,0 t  = a , = o , = + l , u , = i i z = u , =  -0.9.Rt = 2 8 . R , = 2 6 a n d R j = 2 2  
in equations (5) and (6) as an initial condition, we find that the three-soliton state is 
stable in the bias current range 0.02 < I C 0.043. The corresponding 3.ZFS is shown in 
figure 2(h)  as open squares. The average voltage Vequals 12x/T where Tis the period 
of the state under a certain bias current. However, in such a state. uluzu3 = -1, i.e. 
there is always a soliton with a polarity different from those of the others. This can be 
seen in figure 4 which shows the solution qp - p at successive moments under a bias 
current of I = 0.03. We would like to emphasize that the three-soliton state here is not 
in the symmetric standing-wave mode. The reason is similar to the case of the two- 
soliton state. 

With the slow decrease in f at the lower end of the 3-ZFS, the three-soliton state 
switches to a one-soliton state, but never to a two-soliton state in our case. A pair of 
solitons disappears. On the other hand, with increase in f at the upper end of the 3-ZFS. 
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the three-soliton state switches to a complicated rotational state, similar to the transition 
of the two-soliton state. 

We can see from figure 4 that there are many small waves, or fluctuations in the 
solution, which in our view, result from the l/p term in equation (1) and the successive 
reflection of each soliton at the boundaries. A continuous mode is excited when the 
reflection or soliton collision occurs even in a I D  case [ 161. The effect of soliton reflection 
becomes more and more important with increasing number of solitons. Thus, a state 
that trapstoo many solitons would be unstable. Thisis discussed in the following section. 

3.4. The unstable multiple-soliton states, rotational states and soliton excitation 

T a k i n g m = 4 , 0 i = u 2 = + 1 , u i = u 2 =  - 0 . 9 4 , R , = 2 6 , R 2 = 2 2 , u ~ = u ~ = - l , r c 2 =  
u4 = 0.9, R ,  = 24 and R,  = 28 in equations ( 5 )  and (6) as an initial condition, we find 
that the final state is not a four-soliton state. Varying the parameters in equations ( 5 )  
and (6) gives the same results. The final state may be a two-soliton state or a non-periodic 
rotational state, depending on the bias current. We have taken the superposition of a 
stable three-soliton solution and a stable one-soliton solution as another kind of initial 
condition; unfortunately no stable four-soliton state has been found. However, the final 
state may be a stable three-soliton state again in a certain range of bias currents. 
Therefore, the transition of the assumed four-soliton state depends on the initial 
condition. 

Furthermore, we have taken other initial conditions described by equations (5) and 
(6) with 10 > m > 4; as a result, we have not found any corresponding stable multiple- 
soliton state. The final state is non-periodic because of the random transition between 
twoormoremultiple-solitonstates. Recently,astudyon thechaosina ~~IongJosephson 
junction without an external RF driving force has been made [5]. It is not impossible for 
chaos to occur in our system since the boundary conditions, equations (2) and (3 ) ,  are 
similar to that of a ID junction with a DC external field. The chaotic behaviour of the 
junction can he seen from figure 5, the I-V characteristic in such a state. Figure 5 also 
shows the hysteresis for increasing current from the upper end of I-ZFS and decreasing 
from the periodic rotational state. 

Finally, from a rotational state, we get a stable two-soliton state by decreasing the 
bias current adiabatically to I = 0.032 and, by decreasing the bias current further, we 
get a stable one-soliton state, as indicated in figure 2(h) and figure 5. In [6], we have 
shown that the rotational states starting from different initial conditions are finally 
identical. Oneof the realisticinitialconditionsis the flat-valuecondition with q = Oand 
q, = 0 at any position. Thus the transition from a rotational state to a soliton state 
suggests that soliton(s) can be excited practically. 

4. Summary 

We have discussed the stable circularly symmetric multiple-soliton states and the ZFS of 
the annular junction. The rotational state and the hysteresis in the I-V curve are also 
mentioned. We find the following. 

(i) There exist multiple stable states in the annular junction, namely a zero-voltage 
state, one-, two- and three-soliton states in the bias region of the 3-ZFS, and the bias 
range of the ZFS decreases with increase in the number of solitons. 
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Figure 5. The hysteresis behaviour of the I-V characteristics of the junction for increasing 
current from I -znand decreasingcurrent LO thezero-voltage state. The linesand arrowsare 
a guide to the eye 

(ii) I n  the I-ZFS of an annular junction, the minimum bias current and voltage do not 
equal zero. and the transition from a single-soliton state to zero-voltage state at the 
lower end of the I-ZES isdiscontinuous. This phenomenon resultsfrom special dynamical 
behaviour, namely the soliton return effect in the annular junction and the effect of 
soliton reflection at the boundaries discussed in [17.18]. However, only the latter 
contributes theoretically to this kind of phenomenon in the I D  case [17, IS]. 

(iii)There existsa transition between the multiple-soliton states, and asoliton could 
beexcited from a rotationalstate by decreasing the biascurrent, i.e. along the hysteresis 
curve in figure 5. 

Inaddition, it isunder our further investigation whether or not thesolitonsdiscussed 
in the present paper remain stable under structural irregularities and tangential elec- 
tromagneticperturbation from the outside world. This question iscrucial for the exper- 
imental observation of such solitons. 
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Appendix 

We describe briefly here the algorithm used in our numerical simulation. The former 
junction with circular symmetry is divided into N Subanndar junctions circling the 
same origin, each with a width S p  and a radius p( j )  =pi  + ( j  - 1) Sp w,here pi is the 
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internal radius of the former junction, and j = 1, N .  Therefore, in the interior of the 
former junction, equation (1) is discretized as 

( d / d t h ( j )  = [di + 1) + V U  - 1) - 2 d i ) 1 / ( 6 ~ ) ~  

+ [di + 1) - d j  - 1 ) 1 / M j )  &I - sin[rp(i)l - w , ( i )  (AI) 

where 2 s j s N - 1. At the boundaries of the former junction, upon referring to 
equations (2) and (3), we get 

(d/dt)q,(l) = [%7(2) - 2 d 1 )  - 1; ~ P / ~ w , ] / ~ P *  + &/2xp: - sin[q,(l)] - a q , ( l )  

(d/dOrp,(N) = [ W N  - 1) - 2 d N )  + 6P (1; + "Pcl/(SP)2 + (Ih + "Pf 
('42) 

- sin[dn?l - auCp,(N) (A3) 
where pc is the external radius of the former junction. On the other hand, we have the 
identity 

(d /dOdi )  = rpdi). (A41 

(d/dt)Y = AY + F ('45) 

For clarity, equations (Al)-(A4) are summarized as 

whereY = (q ( l ) ,  . . . ,q(N);q,(l), . . .. ~ , ( N ) ) ~ , A i s a 2 N x  2Nmatrix.andFisa2N- 
dimensional source-like vector introduced by the feeding current I' and current l h ,  
independentofq(j)andp,(j). BoththevectorFandthematrix Acan befullyevaluated 
from equations (Al)-(A4). Upon using the initial conditions described by equations (5) 
and (6 ) ,  we then solve equation (A5) by the fourth-order Runge-Kutta integration 
method and get the vector flow Y at the subsequent moment. Double precision is used 
in the computation. Good precision and computation stability are always achieved, as 
long as (Sp)' - 6t and Sp < 0.1. (The reader is referred to the literature for a rigorous 
discussion of the algorithm.) 
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